Take our Survey

Reference: Kumari R and Pramanik K (2012) Improvement of multiple stress tolerance in yeast strain by sequential mutagenesis for enhanced bioethanol production. J Biosci Bioeng 114(6):622-9

Reference Help

Abstract


The present work deals with the improvement of multiple stress tolerance in a glucose-xylose co-fermenting hybrid yeast strain RPR39 by sequential mutagenesis using ethyl methane sulfonate, N-methyl-N'-nitro-N-nitrosoguanidine, near and far ultraviolet radiations. The mutants were evaluated for their tolerance to ethanol, temperature and fermentation inhibitors. Among these mutants, mutant RPRT90 exhibited highest tolerance to 10% initial ethanol concentration, 2 g L(-1) furfural and 8 g L(-1) acetic acid. The mutant also showed good growth at high temperature (39-40?C). A study on the combined effect of multiple stresses during fermentation of glucose-xylose mixture (3:1 ratio) was performed using mutant RPRT90. Under the combined effect of thermal (39?C) and inhibitor stress (0.25 g L(-1) vanillin, 0.5 g L(-1) furfural and 4 g L(-1) acetic acid), the mutant produced ethanol with a yield of 0.379 g g(-1), while under combined effect of ethanol (7% v/v) and inhibitor stress the ethanol yield obtained was 0.43 g g(-1). Further, under the synergistic effect of sugar (250 g L(-1)), thermal (39?C), ethanol (7% v/v) and inhibitors stress, the strain produced a maximum of 47.93 g L(-1) ethanol by utilizing 162.42 g L(-1) of glucose-xylose mixture giving an ethanol yield of 0.295 g g(-1) and productivity of 0.57 g L(-1) h(-1). Under same condition the fusant RPR39 produced a maximum of 30.0 g L(-1) ethanol giving a yield and productivity of 0.21 g g(-1) and 0.42 g L(-1) h(-1) respectively. The molecular characterization of mutant showed considerable difference in its genetic profile from hybrid RPR39. Thus, sequential mutagenesis was found to be effective to improve the stress tolerance properties in yeast.

Reference Type
Journal Article
Authors
Kumari R, Pramanik K
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference