Reference: Bortolotti CA, et al. (2012) The reversible opening of water channels in cytochrome c modulates the heme iron reduction potential. J Am Chem Soc 134(33):13670-8

Reference Help

Abstract


Dynamic protein-solvent interactions are fundamental for life processes, but their investigation is still experimentally very demanding. Molecular dynamics simulations up to hundreds of nanoseconds can bring to light unexpected events even for extensively studied biomolecules. This paper reports a combined computational/experimental approach that reveals the reversible opening of two distinct fluctuating cavities in Saccharomyces cerevisiae iso-1-cytochrome c. Both channels allow water access to the heme center. By means of a mixed quantum mechanics/molecular dynamics (QM/MD) theoretical approach, the perturbed matrix method (PMM), that allows to reach long simulation times, changes in the reduction potential of the heme Fe(3+)/Fe(2+) couple induced by the opening of each cavity are calculated. Shifts of the reduction potential upon changes in the hydration of the heme propionates are observed. These variations are relatively small but significant and could therefore represent a tool developed by cytochrome c for the solvent driven, fine-tuning of its redox functionality.

Reference Type
Journal Article
Authors
Bortolotti CA, Amadei A, Aschi M, Borsari M, Corni S, Sola M, Daidone I
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference