Reference: Wen Z, et al. (2012) Identifying responsive modules by mathematical programming: an application to budding yeast cell cycle. PLoS One 7(7):e41854

Reference Help

Abstract


High-throughput biological data offer an unprecedented opportunity to fully characterize biological processes. However, how to extract meaningful biological information from these datasets is a significant challenge. Recently, pathway-based analysis has gained much progress in identifying biomarkers for some phenotypes. Nevertheless, these so-called pathway-based methods are mainly individual-gene-based or molecule-complex-based analyses. In this paper, we developed a novel module-based method to reveal causal or dependent relations between network modules and biological phenotypes by integrating both gene expression data and protein-protein interaction network. Specifically, we first formulated the identification problem of the responsive modules underlying biological phenotypes as a mathematical programming model by exploiting phenotype difference, which can also be viewed as a multi-classification problem. Then, we applied it to study cell-cycle process of budding yeast from microarray data based on our biological experiments, and identified important phenotype- and transition-based responsive modules for different stages of cell-cycle process. The resulting responsive modules provide new insight into the regulation mechanisms of cell-cycle process from a network viewpoint. Moreover, the identification of transition modules provides a new way to study dynamical processes at a functional module level. In particular, we found that the dysfunction of a well-known module and two new modules may directly result in cell cycle arresting at S phase. In addition to our biological experiments, the identified responsive modules were also validated by two independent datasets on budding yeast cell cycle.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Wen Z, Liu ZP, Yan Y, Piao G, Liu Z, Wu J, Chen L
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference