Take our Survey

Reference: Meem MH and Cullen PJ (2012) The impact of protein glycosylation on Flo11-dependent adherence in Saccharomyces cerevisiae. FEMS Yeast Res 12(7):809-18

Reference Help

Abstract

Fungal cell adhesion molecules are critical for the attachment of cells to each other and to surfaces and in pathogens contribute to virulence. Fungal adhesins are typically heavily glycosylated. The impact of protein glycosylation on the function and regulation of adhesion glycoproteins is not clear. We examined the role of protein glycosylation on the adherence properties of the major adhesion molecule Muc1/Flo11 in the budding yeast Saccharomyces cerevisiae. Using a conditional mutant required for an early step in protein glycosylation, pmi40-101, we show that the glycosylation of Flo11 is required for invasive growth and biofilm/mat formation. Underglycosylated Flo11 was not defective in cell-surface localization or binding to wild-type cells in trans. However, wild-type Flo11 was defective for binding to the surface of cells undergoing a glycosylation stress. Shed Flo11 and other shed glycoproteins (Msb2 and Hkr1) were extremely stable with half-lives on the order of days. The glycosylation of Flo11 contributed to its stability. Moreover, the overall balance between Flo11 production, shedding, and turnover favored accumulation of the shed protein over time. Our findings may be applicable to fungal adhesion molecules in other species including pathogens.

Reference Type
Journal Article
Authors
Meem MH, Cullen PJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference