Reference: Tu S, et al. (2012) Transcription network analysis by a sparse binary factor analysis algorithm. J Integr Bioinform 9(2):198

Reference Help

Abstract


Transcription factor activities (TFAs), rather than expression levels, control gene expression and provide valuable information for investigating TF-gene regulations. The underlying bimodal or switch-like patterns of TFAs may play important roles in gene regulation. Network Component Analysis (NCA) is a popular method to deduce TFAs and TF-gene control strengths from microarray data. However, it does not directly examine the bimodality of TFAs and it needs TF-gene connection topology a priori known. In this paper, we modify NCA to model gene expression regulation by Binary Factor Analysis (BFA), which directly captures switch-like patterns of TFAs. Moreover, sparse technique is employed on the mixing matrix of BFA, and thus the proposed sparse BYY-BFA algorithm, developed under Bayesian Ying-Yang (BYY) learning framework, can not only uncover the latent TFA profile’s switch-like patterns, but also be capable of automatically shutting off the unnecessary connections. Simulation study demonstrates the effectiveness of BYY-BFA, and a preliminary application to Saccharomyces cerevisiae cell cycle data and Escherichia coli carbon source transition data shows that the reconstructed binary patterns of TFAs by BYY-BFA are consistent with the ups and downs of TFAs by NCA, and that BYY-BFA also works well when the network topology is unknown.

Reference Type
Journal Article
Authors
Tu S, Chen R, Xu L
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference