Take our Survey

Reference: Liao CC, et al. (2012) Trans-kingdom rescue of Gln-tRNAGln synthesis in yeast cytoplasm and mitochondria. Nucleic Acids Res 40(18):9171-81

Reference Help

Abstract

Aminoacylation of transfer RNA(Gln) (tRNA(Gln)) is performed by distinct mechanisms in different kingdoms and represents the most diverged route of aminoacyl-tRNA synthesis found in nature. In Saccharomyces cerevisiae, cytosolic Gln-tRNA(Gln) is generated by direct glutaminylation of tRNA(Gln) by glutaminyl-tRNA synthetase (GlnRS), whereas mitochondrial Gln-tRNA(Gln) is formed by an indirect pathway involving charging by a non-discriminating glutamyl-tRNA synthetase and the subsequent transamidation by a specific Glu-tRNA(Gln) amidotransferase. Previous studies showed that fusion of a yeast non-specific tRNA-binding cofactor, Arc1p, to Escherichia coli GlnRS enables the bacterial enzyme to substitute for its yeast homologue in vivo. We report herein that the same fusion enzyme, upon being imported into mitochondria, substituted the indirect pathway for Gln-tRNA(Gln) synthesis as well, despite significant differences in the identity determinants of E. coli and yeast cytosolic and mitochondrial tRNA(Gln) isoacceptors. Fusion of Arc1p to the bacterial enzyme significantly enhanced its aminoacylation activity towards yeast tRNA(Gln) isoacceptors in vitro. Our study provides a mechanism by which trans-kingdom rescue of distinct pathways of Gln-tRNA(Gln) synthesis can be conferred by a single enzyme.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Liao CC, Lin CH, Chen SJ, Wang CC
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference