Reference: Kucharczyk R, et al. (2013) Defining the pathogenesis of human mtDNA mutations using a yeast model: the case of T8851C. Int J Biochem Cell Biol 45(1):130-40

Reference Help

Abstract


More and more mutations are found in the mitochondrial DNA of various patients but ascertaining their pathogenesis is often difficult. Due to the conservation of mitochondrial function from yeast to humans, the unique ability of yeast to survive without production of ATP by oxidative phosphorylation, and the amenability of the yeast mitochondrial genome to site-directed mutagenesis, yeast is an excellent model for investigating the consequences of specific human mtDNA mutations. Here we report the construction of a yeast model of a point mutation (T8851C) in the mitochondrially-encoded subunit a/6 of the ATP synthase that has been associated with bilateral striatal lesions, a group of rare human neurological disorders characterized by symmetric degeneration of the corpus striatum. The biochemical consequences of this mutation are unknown. The T8851C yeast displayed a very slow growth phenotype on non-fermentable carbon sources, both at 28°C (the optimal temperature for yeast growth) and at 36°C. Mitochondria from T8851C yeast grown in galactose at 28°C showed a 60% deficit in ATP production. When grown at 36°C the rate of ATP synthesis was below 5% that of the wild-type, indicating that heat renders the mutation much more deleterious. At both growth temperatures, the mutant F(1)F(o) complex was correctly assembled but had only very weak ATPase activity (about 10% that of the control), both in mitochondria and after purification. These findings indicate that a block in the proton-translocating domain of the ATP synthase is the primary cause of the neurological disorder in the patients carrying the T8851C mutation. This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaptation and therapy.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Kucharczyk R, Giraud MF, Brèthes D, Wysocka-Kapcinska M, Ezkurdia N, Salin B, Velours J, Camougrand N, Haraux F, di Rago JP
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference