Take our Survey

Reference: Surana U, et al. (2012) Staging a recovery from mitotic arrest: Unusual ways of Cdk1. Bioarchitecture 2(2):33-37

Reference Help

Abstract

Checkpoint controls, the surveillance pathways that impose "an order of execution" on the major cell cycle events, are critical to the maintenance of genome stability. When cells fail to execute a cellular event or do so erroneously due to misregulation or exposure to genotoxic stresses, these evolutionarily conserved regulatory circuits prevent passage to the subsequent event, thus bringing the cell cycle to a halt. Once the checkpoint stimulus is removed, cells recover from the arrest and eventually resume cell cycle progression. While the activation, execution and maintenance, the three major aspects of the checkpoint controls, have been investigated in detail, the recovery process remains underexplored. It is not clear if cells recover passively upon dissipation of the checkpoint signals or require an active participation by specific effectors. A recent study in the yeast Saccharomyces cerevisiae uncovered two previously unsuspected functions of Cdk1 in efficient recovery from the spindle assembly checkpoint (SAC) imposed arrest. An inability to fulfil these requirements in the absence of Cdk1 makes it virtually impossible for cells to recover from the mitotic arrest. Given the conserved nature of the SAC, these findings may have implications for vertebrate cells.

Reference Type
Journal Article
Authors
Surana U, Liang H, Lim HH
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference