Take our Survey

Reference: Zielinska DF, et al. (2012) Mapping N-Glycosylation Sites across Seven Evolutionarily Distant Species Reveals a Divergent Substrate Proteome Despite a Common Core Machinery. Mol Cell 46(4):542-8

Reference Help

Abstract


N-linked glycosylation is an important posttranslational modification in all eukaryotes, but little is known about the N-glycoproteomes in nonmammalian systems. Here, we measure N-glycoproteomes of the major model organisms Arabidopsis thaliana, Schizosaccharomyces pombe, Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, and Danio rerio, representatively spanning the eukaryotic domain of life. The number of detected N-glycosylation sites varied between 425 in fission yeast, 516 in budding yeast, 1,794 in worm, 2,186 in plant, 2,229 in fly, and 2,254 in zebrafish. We find that all eukaryotic N-glycoproteomes have invariant characteristics including sequence recognition patterns, structural constraints, and subcellular localization. However, a surprisingly large percentage of the N-glycoproteome evolved after the phylogenetic divergences between plants, fungi, nematodes, insects, and vertebrates. Many N-glycosylated proteins coevolved with the rise of extracellular processes that are specific within corresponding phylogenetic groups and essential for organismal development, body growth, and organ formation.CI - Copyright (c) 2012 Elsevier Inc. All rights reserved.

Reference Type
Journal Article
Authors
Zielinska DF, Gnad F, Schropp K, Wisniewski JR, Mann M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference