Reference: Samel A, et al. (2012) Methylation of CenH3 arginine 37 regulates kinetochore integrity and chromosome segregation. Proc Natl Acad Sci U S A 109(23):9029-34

Reference Help

Abstract


Centromeres of eukaryotic chromosomes mark the site for kinetochore formation and microtubule attachment and are essential for accurate chromosome segregation. Although centromere identity is defined by the presence of the histone H3 variant CenH3/centromere protein A (CENP-A), little is known about how epigenetic modifications on CenH3 might regulate kinetochore assembly and centromere function. Here we show that CENP-A from Saccharomyces cerevisiae, termed Cse4, is methylated on arginine 37 (R37) and that this methylation regulates the recruitment of kinetochore components to centromeric sequences. The absence of Cse4 R37 methylation caused a growth defect in cells lacking the centromere binding factor Cbf1 and synthetic lethality when combined with mutations in components of the Ctf19 linker complex that connects the inner kinetochore to microtubule-binding proteins. The cells showed a cell-cycle arrest in G2/M phase and defects in plasmid and chromosome segregation. Furthermore, the levels of Mtw1/MIND (Mtw1 including Nnf1-Nsl1-Dsn1) and Ctf19 components at the centromere, but not of Cse4 itself, were reduced in the absence of Cse4 R37 methylation, thus showing that this modification regulates the recruitment of linker components to the centromere. Altogether, our data identify a unique regulatory principle on centromeric chromatin by posttranslational modification of the amino terminus of CenH3.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Samel A, Cuomo A, Bonaldi T, Ehrenhofer-Murray AE
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference