Reference: Santos J, et al. (2012) Ammonium is toxic for aging yeast cells, inducing death and shortening of the chronological lifespan. PLoS One 7(5):e37090

Reference Help

Abstract


Here we show that in aging Saccharomyces cerevisiae (budding yeast) cells, NH(4) (+) induces cell death associated with shortening of chronological life span. This effect is positively correlated with the concentration of NH(4) (+) added to the culture medium and is particularly evident when cells are starved for auxotrophy-complementing amino acids. NH(4) (+)-induced cell death is accompanied by an initial small increase of apoptotic cells followed by extensive necrosis. Autophagy is inhibited by NH(4) (+), but this does not cause a decrease in cell viability. We propose that the toxic effects of NH(4) (+) are mediated by activation of PKA and TOR and inhibition of Sch9p. Our data show that NH(4) (+) induces cell death in aging cultures through the regulation of evolutionary conserved pathways. They may also provide new insights into longevity regulation in multicellular organisms and increase our understanding of human disorders such as hyperammonemia as well as effects of amino acid deprivation employed as a therapeutic strategy.

Reference Type
Journal Article
Authors
Santos J, Sousa MJ, Leao C
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference