Take our Survey

Reference: Carter SD and Sjogren C (2012) The SMC complexes, DNA and chromosome topology: right or knot? Crit Rev Biochem Mol Biol 47(1):1-16

Reference Help

Abstract


Topology is the study of geometric properties that are preserved during bending, twisting and stretching of objects. In the context of the genome, topology is discussed at two interconnected and overlapping levels. The first focuses the DNA double helix itself, and includes alterations such as those triggered by DNA interacting proteins, processes which require the separation of the two DNA strands and DNA knotting. The second level is centered on the higher order organization of DNA into chromosomes, as well as dynamic conformational changes that occur on a chromosomal scale. Here, we refer to the first level as "DNA topology", the second as "chromosome topology". Since their identification, evidences suggesting that the so called structural maintenance of chromosomes (SMC) protein complexes are central to the interplay between DNA and chromosome topology have accumulated. The SMC complexes regulate replication, segregation, repair and transcription, all processes which influence, and are influenced by, DNA and chromosome topology. This review focuses on the details of the relationship between the SMC complexes and topology. It also discusses the possibility that the SMC complexes are united by a capability to sense the geometrical chirality of DNA crossings.

Reference Type
Journal Article | Review | Research Support, Non-U.S. Gov't
Authors
Carter SD, Sjogren C
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference