Take our Survey

Reference: Sadeh A, et al. (2012) Conserved motifs in the Msn2-activating domain are important for Msn2-mediated yeast stress response. J Cell Sci 125(Pt 14):3333-42

Reference Help

Abstract

The Msn2 and Msn4 transcription factors play crucial roles in the yeast general stress response. Previous studies identified several large functional domains of Msn2, mainly through crude truncations. Here, using bioinformatics and experimental approaches to examine Msn2 structure-function relationships, we have identified new functional motifs in the Msn2 transcriptional-activating domain (TAD). Msn2 is predicted to adopt an intrinsically disordered structure with two short structural motifs in its TAD. Mutations in these motifs dramatically decreased Msn2 transcriptional activity, yeast stress survival and Msn2 nuclear localization levels. Using the split-ubiquitin assay, we found that these motifs are important for the interaction of Msn2 with Gal11, a subunit of the mediator complex. Finally, we show that one of these motifs is functionally conserved in several yeast species, highlighting a common mechanism of Msn2 transcriptional activation throughout yeast evolution.

Reference Type
Journal Article
Authors
Sadeh A, Baran D, Volokh M, Aharoni A
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference