Take our Survey

Reference: Hornung G, et al. (2012) Nucleosome organization affects the sensitivity of gene expression to promoter mutations. Mol Cell 46(3):362-8

Reference Help

Abstract

Gene expression diverges rapidly between related species, playing a key role in the evolution of new phenotypes. The extent of divergence differs greatly between genes and is correlated to promoter nucleosome organization. We hypothesized that this may be partially explained by differential sensitivity of expression to mutations in the promoter region. We measured the sensitivity of 22 yeast promoters with varying nucleosome patterns to random mutations in sequence. Mutation sensitivity differed by up to 10-fold between promoters. This difference could not be explained by the abundance of transcription factor binding sites. Rather, mutation sensitivity positively correlated with the relative occupancy of nucleosomes at the proximal promoter region. Furthermore, mutation sensitivity was reduced upon introduction of a binding site for Reb1, a factor that blocks nucleosome formation, suggesting that nucleosome organization directly regulates mutation sensitivity. Our study suggests an important role for chromatin structure in the evolution of gene expression.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, N.I.H., Extramural
Authors
Hornung G, Oren M, Barkai N
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference