Take our Survey

Reference: Sun M, et al. (2012) Comparative dynamic transcriptome analysis (cDTA) reveals mutual feedback between mRNA synthesis and degradation. Genome Res 22(7):1350-9

Reference Help

Abstract

To monitor eukaryotic mRNA metabolism, we developed comparative dynamic transcriptome analysis (cDTA). cDTA provides absolute rates of mRNA synthesis and decay in Saccharomyces cerevisiae (Sc) cells with the use of Schizosaccharomyces pombe (Sp) as an internal standard. cDTA uses nonperturbing metabolic labeling that supersedes conventional methods for mRNA turnover analysis. cDTA reveals that Sc and Sp transcripts that encode orthologous proteins have similar synthesis rates, whereas decay rates are fivefold lower in Sp, resulting in similar mRNA concentrations despite the larger Sp cell volume. cDTA of Sc mutants reveals that a eukaryote can buffer mRNA levels. Impairing transcription with a point mutation in RNA polymerase (Pol) II causes decreased mRNA synthesis rates as expected, but also decreased decay rates. Impairing mRNA degradation by deleting deadenylase subunits of the Ccr4-Not complex causes decreased decay rates as expected, but also decreased synthesis rates. Extended kinetic modeling reveals mutual feedback between mRNA synthesis and degradation that may be achieved by a factor that inhibits synthesis and enhances degradation.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Sun M, Schwalb B, Schulz D, Pirkl N, Etzold S, Lariviere L, Maier KC, Seizl M, Tresch A, Cramer P
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference