Take our Survey

Reference: Umekawa M and Klionsky DJ (2012) Ksp1 kinase regulates autophagy via the target of rapamycin complex 1 (TORC1) pathway. J Biol Chem 287(20):16300-10

Reference Help

Abstract


Macroautophagy (hereafter autophagy) is a bulk degradation system conserved in all eukaryotes, which engulfs cytoplasmic components within double-membrane vesicles to allow their delivery to, and subsequent degradation within, the vacuole/lysosome. Autophagy activity is tightly regulated in response to the nutritional state of the cell and also to maintain organelle homeostasis. In nutrient-rich conditions, Tor kinase complex 1 (TORC1) is activated to inhibit autophagy, whereas inactivation of this complex in response to stress leads to autophagy induction; however, it is unclear how the activity of TORC1 is controlled to allow precise adjustments in autophagy activity. In this study, we performed genetic analyses in Saccharomyces cerevisiae to identify factors that regulate TORC1 activity. We determined that the Ksp1 kinase functions in part as a negative regulator of autophagy; deletion of KSP1 facilitated dephosphorylation of Atg13, a TORC1 substrate, which correlates with enhanced autophagy. These results suggest that Ksp1 down-regulates autophagy activity via the TORC1 pathway. The suppressive function of Ksp1 is partially activated by the Ras/cAMP-dependent protein kinase A (PKA), which is another negative regulator of autophagy. Our study therefore identifies Ksp1 as a new component that functions as part of the PKA and TORC1 signaling network to control the magnitude of autophagy.

Reference Type
Journal Article
Authors
Umekawa M, Klionsky DJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference