Take our Survey

Reference: Yang JR, et al. (2012) Protein misinteraction avoidance causes highly expressed proteins to evolve slowly. Proc Natl Acad Sci U S A 109(14):E831-40

Reference Help

Abstract

The tempo and mode of protein evolution have been central questions in biology. Genomic data have shown a strong influence of the expression level of a protein on its rate of sequence evolution (E-R anticorrelation), which is currently explained by the protein misfolding avoidance hypothesis. Here, we show that this hypothesis does not fully explain the E-R anticorrelation, especially for protein surface residues. We propose that natural selection against protein-protein misinteraction, which wastes functional molecules and is potentially toxic, constrains the evolution of surface residues. Because highly expressed proteins are under stronger pressures to avoid misinteraction, surface residues are expected to show an E-R anticorrelation. Our molecular-level evolutionary simulation and yeast genomic analysis confirm multiple predictions of the hypothesis. These findings show a pluralistic origin of the E-R anticorrelation and reveal the role of protein misinteraction, an inherent property of complex cellular systems, in constraining protein evolution.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Yang JR, Liao BY, Zhuang SM, Zhang J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference