Reference: Chang DT, et al. (2012) A study on promoter characteristics of head-to-head genes in Saccharomyces cerevisiae. BMC Genomics 13 Suppl 1(Suppl 1):S11

Reference Help

Abstract


Background: Head-to-head (h2h) genes are prone to have association in expression and in functionality and have been shown conserved in evolution. Currently there are many studies on such h2h gene pairs. We found that the previous studies extremely focused on human genome. Furthermore, they only focused on analyses that require only gene or protein sequences but not conducted a systematic investigation on other promoter features such as the binding evidence of specific transcription factors (TFs). This is mainly because of the incomplete resources of higher organisms, though they are relatively of interest, than model organisms such as Saccharomyces cerevisiae. The authors of this study recently integrated nine promoter features of 6603 genes of S. cerevisiae from six databases and five papers. These resources are suitable to conduct a comprehensive analysis of h2h genes in S. cerevisiae.

Results: This study analyzed various promoter features, including transcription boundaries (TSS, 5'UTR and 3'UTR), TATA box, TF binding evidence, TF regulation evidence, DNA bendability and nucleosome occupancy. The expression profiles and gene ontology (GO) annotations were used to measure if two genes are associated. Based on these promoter features, we found that i) the frequency of h2h genes was close to the expectation, namely they were not relatively frequent in genome; ii) the distance between the TSSs of most h2h genes fell into the range of 0-600 bps and was more centralized in 0-200 bps of the highly associated ones; iii) the number of TFs that regulate both h2h genes influenced the co-expression and co-function of the genes, while the number of TFs that bind both h2h genes influenced only the co-expression of the genes; iv) the association of two h2h genes was influenced by the existence of specific TFs such as STP2; v) the association of h2h genes whose bidirectional promoters have no TATA box was slightly higher than those who have TATA boxes; vi) the association of two h2h genes was not influenced by the DNA bendability and nucleosome occupancy.

Conclusions: This study analyzed h2h genes with various promoter features that have not been used in analyzing h2h genes. The results can be applied to other genomes to confirm if the observations of this study are limited to S. cerevisiae or universal in most organisms.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Chang DT, Wu CY, Fan CY
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference