Reference: Sun J, et al. (2012) Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae. Biotechnol Bioeng 109(8):2082-92

Reference Help

Abstract


Saccharomyces cerevisiae is an important platform organism for synthesis of chemicals and fuels. However, the promoters used in most pathway engineering studies in S. cerevisiae have not been characterized and compared in parallel under multiple conditions that are routinely operated in laboratory and the number of known promoters is rather limited for the construction of large biochemical pathways. Here a total of 14 constitutive promoters from S. cerevisiae were cloned and characterized using a green fluorescent protein (GFP) as a reporter in a 2 ? vector pRS426, under varying glucose and oxygen concentrations. The strengths of these promoters varied no more than sixfold in the mean fluorescence intensity of GFP, with promoter TEF1p being the strongest and promoter PGI1p the weakest. As an example of application for these promoters in metabolic engineering, the genes involved in xylan degradation and zeaxanthin biosynthesis were subsequently cloned under the control of promoters with medium to high strength and assembled into a single pathway. The corresponding construct was transformed to a S. cerevisiae strain integrated with a D-xylose utilizing pathway. The resulting strain produced zeaxanthin with a titer of 0.74 ? 0.02 mg/L directly from birchwood xylan.

Reference Type
Journal Article
Authors
Sun J, Shao Z, Zhao H, Nair N, Wen F, Xu JH, Zhao H
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference