Reference: Taberner FJ, et al. (2012) Regulation of cell cycle transcription factor Swi5 by karyopherin Msn5. Biochim Biophys Acta 1823(4):959-70

Reference Help

Abstract


Inactivation of S. cerevisiae ?-karyopherin Msn5 causes hypersensitivity to the overexpression of mitotic cyclin Clb2 and aggravates growth defects of many mutant strains in mitotic exit, suggesting a connection between Msn5 and mitotic exit. We determined that Msn5 controlled subcellular localization of the mitotic exit transcription factor Swi5, since it was required for Swi5 nuclear export. Msn5 physically interacted with the N-terminal end of Swi5. Inactivation of Msn5 caused a severe reduction in cellular levels of Swi5 protein. This effect occurred by a post-transcriptional mechanism, since SWI5 mRNA levels were not affected. The reduced amount of Swi5 in msn5 mutant cells was not due to an increased protein degradation rate, but to a defect in Swi5 synthesis. Despite the change in localization and protein level, Swi5-regulated transcription was not defective in the msn5 mutant strain. However, a high level of Swi5 was toxic in the absence of Msn5. This deleterious effect was eliminated when Swi5 nuclear import was abrogated, suggesting that nuclear export by Msn5 is important for cell physiology, because it prevents toxic Swi5 nuclear accumulation.

Reference Type
Journal Article
Authors
Taberner FJ, Quilis I, Sendra J, Bano MC, Igual JC
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference