Reference: Haldar S, et al. (2012) High copies of SUM1 enhance the stability of wild-type microtubules against adverse conditions in Saccharomyces cerevisiae. Biochem Biophys Res Commun 418(3):525-30

Reference Help

Abstract


The budding yeast transcriptional repressor Sum1p binds to several promoters and recruits Hst1p, an NAD(+)-dependent histone deacetylase, at these promoters with the help of another protein Rfm1p. Hst1p causes repression of transcription by histone deacetylation of chromatin at its target promoters. In an earlier work we have shown that about 13-fold increase in Sum1p levels, brought about by expressing SUM1 from the high copy 2 micron plasmid (2 ?-SUM1), suppressed cold-sensitive growth phenotype associated with mutations in the a-tubulin gene TUB1. In this work we show that the dosage suppression is accompanied by an elevation of a-tubulin levels in mutant cells at their non-permissive growth temperature of 14?C. Further, 2 ?-SUM1 significantly rescued the benomyl-supersensitive growth phenotype of mutant cells having wild-type tubulin subunits but a deficiency in tubulin folding cofactors. Finally, wild-type 2 ?-SUM1 transformants, having no known mutation in microtubule-related genes, displayed spindle microtubules which were substantially more stable than of wild-type control cells when challenged with microtubule-depolymerizing drugs. Therefore, we conclude that high copies of Sum1p stabilize microtubules against a variety of adverse and destabilizing conditions like mutations, low temperatures and drugs.

Reference Type
Journal Article
Authors
Haldar S, Sarkar S, Singh V, Sinha P
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference