Reference: Covo S, et al. (2012) RAD53 is limiting in double-strand break repair and in protection against toxicity associated with ribonucleotide reductase inhibition. DNA Repair (Amst) 11(3):317-23

Reference Help

Abstract


The yeast Chk2/Chk1 homolog Rad53 is a central component of the DNA damage checkpoint system. While it controls genotoxic stress responses such as cell cycle arrest, replication fork stabilization and increase in dNTP pools, little is known about the consequences of reduced Rad53 levels on the various cellular endpoints or about its roles in dealing with chronic vs. acute genotoxic challenges. Using a tetraploid gene dosage model in which only one copy of the yeast RAD53 is functional (simplex), we found that the simplex strain was not sensitive to acute UV radiation or chronic MMS exposure. However, the simplex strain was sensitized to chronic exposure of the ribonucleotide reductase inhibitor hydroxyurea (HU). Surprisingly, reduced RAD53 gene dosage did not affect sensitivity to HU acute exposure, indicating that immediate checkpoint responses and recovery from HU-induced stress were not compromised. Interestingly, cells of most of the colonies that arise after chronic HU exposure acquired heritable resistance to HU. We also found that short HU exposure before and after treatment of G₂ cells with ionizing radiation (IR) reduced the capability of RAD53 simplex cells to repair DSBs, in agreement with sensitivity of RAD53 simplex strain to high doses of IR. We propose that a modest reduction in Rad53 activity can impact the activation of the ribonucleotide reductase catalytic subunit Rnr1 following stress, reducing the ability to generate nucleotide pools sufficient for DNA repair and replication. At the same time, reduced Rad53 activity may lead to genome instability and to the acquisition of drug resistance before and/or during the chronic exposure to HU. These results have implications for developing drug enhancers as well as for understanding mechanisms of drug resistance in cells compromised for DNA damage checkpoint.

Reference Type
Journal Article | Research Support, N.I.H., Intramural | Research Support, U.S. Gov't, P.H.S.
Authors
Covo S, Westmoreland JW, Reddy AK, Gordenin DA, Resnick MA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference