Reference: Yoshida S and Yokoyama A (2012) Identification and characterization of genes related to the production of organic acids in yeast. J Biosci Bioeng 113(5):556-61

Reference Help

Abstract


Organic acids contribute to the flavor of many foods and drinks including alcoholic beverages. To study the cellular processes affecting organic acid production, here we screened collections of Saccharomyces cerevisiae deletion mutants and identified 36 yeast mutants forming a yellow halo on YPD plates containing bromocresol purple, indicating that the pH of the medium had been lowered. The disrupted genes encoded TCA cycle enzymes, transcription factors, signal transducers, and ubiquitin-related proteins. Acetate, pyruvate, and succinate are produced by yeast fermentation in rich medium, and their production was affected by mutations of the genes GTR1, GTR2, LIP5, LSM1, PHO85, PLM2, RTG1, RTG2 and UBP3, and also succinate dehydrogenase-related genes including EMI5, SDH1, SDH2, SDH4, TCM62 and YDR379C-A. Among the genes identified, overexpression of only LIP5 affected the production of acetate in S. cerevisiae. However, overexpression of EMI5, LIP5, RTG2 and UBP3 had a significant effect on the production of acetate, citrate, lactate, and succinate in the bottom-fermenting yeast Saccharomyces pastorianus. Furthermore, phenotypic analysis of the S. cerevisiae disruptants involved in organic acid production showed that azaserine, citrate, ethionine, and sulfite are useful compounds by which mutants with altered organic acid production might be selected. Taken together, these results suggest that the regulation of many organic acids might be simultaneously achieved by activation or inactivation of a single gene.

Reference Type
Journal Article
Authors
Yoshida S, Yokoyama A
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference