Reference: Peris D, et al. (2012) The molecular characterization of new types of Saccharomyces cerevisiae ? S. kudriavzevii hybrid yeasts unveils a high genetic diversity. Yeast 29(2):81-91

Reference Help

Abstract


New double- and triple-hybrid Saccharomyces yeasts were characterized using PCR-restriction fragment length polymorphism of 35 nuclear genes, located on different chromosome arms, and the sequencing of one nuclear and one mitochondrial gene. Most of these new hybrids were originally isolated from fermentations; however, two of them correspond to clinical and dietary supplement isolates. This is the first time that the presence of double-hybrid S. cerevisiae???S. kudriavzevii in non-fermentative substrates has been reported and investigated. Phylogenetic analysis of the MET6 nuclear gene confirmed the double or triple parental origin of the new hybrids. Restriction analysis of gene regions in these hybrids revealed a high diversity of genome types. From these molecular characterizations, a reduction of the S. kudriavzevii fraction of the hybrid genomes is observed in most hybrids. Mitochondrial inheritance in hybrids was deduced from the analysis of mitochondrial COX2 gene sequences, which showed that most hybrids received the mitochondrial genome from the S. kudriavzevii parent. However, two strains inherited a S. cerevisiae COX2, being the first report of S. cerevisiae???S. kudriavzevii hybrids with S. cerevisiae mitochondrial genomes. These two strains are those showing a higher S. kudriavzevii nuclear genome reduction, especially in the wine hybrid AMH. This may be due to the release of selective pressures acting on the other hybrids to maintain kudriavzevii mitochondria-interacting genes. Copyright ? 2011 John Wiley & Sons, Ltd.

Reference Type
Journal Article
Authors
Peris D, Belloch C, Lopandic K, Alvarez-Perez JM, Querol A, Barrio E
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference