Reference: Kervestin S, et al. (2012) Testing the faux-UTR model for NMD: analysis of Upf1p and Pab1p competition for binding to eRF3/Sup35p. Biochimie 94(7):1560-71

Reference Help

Abstract


Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism that accelerates the degradation of mRNAs containing premature translation termination codons. This quality control pathway depends on the NMD-specific factors, Upf1p, Upf2p/Nmd2p, and Upf3p, as well as the two release factors, eRF1 and eRF3 (respectively designated Sup45p and Sup35p in yeast). NMD activation is also enabled by the absence of the poly(A)-binding protein, Pab1p, downstream of a termination event. Since Sup35p interacts with both Upf1p and Pab1p we considered the possibility that differential binding of the latter factors to Sup35p may be a critical determinant of NMD sensitivity for an mRNA. Here we describe three approaches to assess this hypothesis. First, we tethered fragments or mutant forms of Sup35p downstream of a premature termination codon in a mini-pgk1 nonsense-containing mRNA and showed that the inhibition of NMD by tethered Sup35p does not depend on the domain necessary for the recruitment of Pab1p. Second, we examined the Sup35p interaction properties of Upf1p and Pab1p in vitro and showed that these two proteins bind differentially to Sup35p. Finally, we examined competitive binding between the three proteins and observed that Upf1p inhibits Pab1p binding to Sup35p whereas the interaction between Upf1p and Sup35p is relatively unaffected by Pab1p. These data indicate that the binding of Upf1p and Pab1p to Sup35p may be more complex than anticipated and that NMD activation could involve more than just simple competition between these factors. We conclude that activation of NMD at a premature termination codon is not solely based on the absence of Pab1p and suggest that a specific recruitment step must commit Upf1p to the process and Upf1p-associated mRNAs to NMD.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, N.I.H., Extramural
Authors
Kervestin S, Li C, Buckingham R, Jacobson A
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference