Reference: Afek A, et al. (2011) Nonspecific Transcription-Factor-DNA Binding Influences Nucleosome Occupancy in Yeast. Biophys J 101(10):2465-75

Reference Help

Abstract


Quantitative understanding of the principles regulating nucleosome occupancy on a genome-wide level is a central issue in eukaryotic genomics. Here, we address this question using budding yeast, Saccharomyces cerevisiae, as a model organism. We perform a genome-wide computational analysis of the nonspecific transcription factor (TF)-DNA binding free-energy landscape and compare this landscape with experimentally determined nucleosome-binding preferences. We show that DNA regions with enhanced nonspecific TF-DNA binding are statistically significantly depleted of nucleosomes. We suggest therefore that the competition between TFs with histones for nonspecific binding to genomic sequences might be an important mechanism influencing nucleosome-binding preferences in vivo. We also predict that poly(dA:dT) and poly(dC:dG) tracts represent genomic elements with the strongest propensity for nonspecific TF-DNA binding, thus allowing TFs to outcompete nucleosomes at these elements. Our results suggest that nonspecific TF-DNA binding might provide a barrier for statistical positioning of nucleosomes throughout the yeast genome. We predict that the strength of this barrier increases with the concentration of DNA binding proteins in a cell. We discuss the connection of the proposed mechanism with the recently discovered pathway of active nucleosome reconstitution.CI - Copyright (c) 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

Reference Type
Journal Article
Authors
Afek A, Sela I, Musa-Lempel N, Lukatsky DB
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference