Take our Survey

Reference: Meena RC, et al. (2011) Tolerance to thermal and reductive stress in Saccharomyces cerevisiae is amenable to regulation by phosphorylation-dephosphorylation of ubiquitin conjugating enzyme 1 (Ubc1) S97 and S115. Yeast 28(11):783-93

Reference Help

Abstract


Ubiquitin conjugating enzyme 1 (Ubc1) is a member of the E2 family of enzymes that conjugates ubiquitin to damaged proteins destined for degradation by the ubiquitin proteasomal system. It is necessary for stress tolerance and is essential for cell survival in Saccharomyces cerevisiae. Ubc1 has five serine residues that are potential substrates for phosphorylation by kinases. However, no data are available to indicate that Ubc1 function or stress tolerance in S. cerevisiae is regulated by serine phosphorylation of Ubc1. We demonstrate that Ubc1 is phosphorylated in serine residue(s). Furthermore, expression of Ubc1 mutants that are 'constitutively phosphorylated' or 'dephosphorylated' in mitogen-activated protein (MAP) kinase serine residues (S97 and S115) affected tolerance to thermal and reductive stress in S. cerevisiae. Specifically, expression of Ubc1S97A and S115D increased thermo-tolerance in both BY4741 and TetO7 -UBC1ura3? cells. Serine phosphorylation of Ubc1 was decreased in BY4741 cells following exposure at 40??C. Tolerance to reductive stress in the same strains correlated with the expression of Ubc1S97A. Ubc1 phosphorylation did not show significant alteration under similar conditions. Both hog1? and slt2? cells expressing Ubc1S115D and Ubc1S115A were rendered tolerant to thermal and reductive stress respectively. Ubc1 phosphorylation was higher in BY4741 cells compared to hog1? cells at 30??C and was significantly reduced in BY4741 cells upon exposure at 40??C. Taken together, the cell survival assays and Ubc1 phosphorylation status in strains and under conditions as described above suggest that tolerance to thermal and reductive stress in S. cerevisiae may be regulated by MAP kinase-mediated phosphorylation of Ubc1S97 and S115.

Reference Type
Journal Article
Authors
Meena RC, Thakur S, Nath S, Chakrabarti A
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference