Reference: Yuan DS (2011) Dithizone Staining of Intracellular Zinc: An Unexpected and Versatile Counterscreen for Auxotrophic Marker Genes in Saccharomyces cerevisiae. PLoS One 6(10):e25830

Reference Help

Abstract


Auxotrophic marker genes such as URA3, LEU2, and HIS3 in Saccharomyces cerevisiae have long been used to select cells that have been successfully transformed with recombinant DNA. A longstanding challenge in working with these genes is that counterselection procedures are often lacking. This paper describes the unexpected discovery of a simple plate assay that imparts a bright red stain to cells experiencing nutritional stress from the lack of a marker gene. The procedure specifically stains a zinc-rich vesicular compartment analogous to the zinc-rich secretory vesicles found in insulin-secreting pancreatic islet cells and glutamate-secreting neurons. Staining was greatly diminished in zap1 mutants, which lack a homeostatic activator of zinc uptake, and in cot1 zrc1 double mutants, which lack the two yeast homologs of mammalian vesicle-specific zinc export proteins. Only one of 93 strains with temperature-sensitive alleles of essential genes exhibited an increase in dithizone staining at its non-permissive temperature, indicating that staining is not simply a sign of growth-arrested or dying cells. Remarkably, the procedure works with most commonly used marker genes, highlights subtle defects, uses no reporter constructs or expensive reagents, requires only a few hours of incubation, yields visually striking results without any instrumentation, and is not toxic to the cells. Many potential applications exist for dithizone staining, both as a versatile counterscreen for auxotrophic marker genes and as a powerful new tool for the genetic analysis of a biomedically important vesicular organelle.

Reference Type
Journal Article
Authors
Yuan DS
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference