Reference: Ohkuni K and Kitagawa K (2011) Endogenous transcription at the centromere facilitates centromere activity in budding yeast. Curr Biol 21(20):1695-703

Reference Help

Abstract


BACKGROUND: The centromere (CEN) DNA-kinetochore complex is the specialized chromatin structure that mediates chromosome attachment to the spindle and is required for high-fidelity chromosome segregation. Although kinetochore function is conserved from budding yeast to humans, it was thought that transcription had no role in centromere function in budding yeast, in contrast to other eukaryotes including fission yeast. RESULTS: We report here that transcription at the centromere facilitates centromere activity in the budding yeast Saccharomyces cerevisiae. We identified transcripts at CEN DNA and found that Cbf1, which is a transcription factor that binds to CEN DNA, is required for transcription at CEN DNA. Chromosome instability of cbf1? cells is suppressed by transcription driven from an artificial promoter. Furthermore, we have identified Ste12, which is a transcription factor, and Dig1, a Ste12 inhibitor, as a novel CEN-associated protein complex by an in vitro kinetochore assembly system. Dig1 represses Ste12-dependent transcription at the centromere. CONCLUSIONS: Our studies reveal that transcription at the centromere plays an important role in centromere function in budding yeast. Copyright ? 2011 Elsevier Ltd. All rights reserved.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, N.I.H., Extramural
Authors
Ohkuni K, Kitagawa K
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference