Take our Survey

Reference: Hernandez-Verdun D, et al. (2010) The nucleolus: structure/function relationship in RNA metabolism. Wiley Interdiscip Rev RNA 1(3):415-31

Reference Help

Abstract


The nucleolus is the ribosome factory of the cells. This is the nuclear domain where ribosomal RNAs are synthesized, processed, and assembled with ribosomal proteins. Here we describe the classical tripartite organization of the nucleolus in mammals, reflecting ribosomal gene transcription and pre-ribosomal RNA (pre-rRNA) processing efficiency: fibrillar center, dense fibrillar component, and granular component. We review the nucleolar organization across evolution from the bipartite organization in yeast to the tripartite organization in humans. We discuss the basic principles of nucleolar assembly and nucleolar structure/function relationship in RNA metabolism. The control of nucleolar assembly is presented as well as the role of pre-existing machineries and pre-rRNAs inherited from the previous cell cycle. In addition, nucleoli carry many essential extra ribosomal functions and are closely linked to cellular homeostasis and human health. The last part of this review presents recent advances in nucleolar dysfunctions in human pathology such as cancer and virus infections that modify the nucleolar organization. Copyright (c) 2010 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs website.CI - Copyright (c) 2010 John Wiley & Sons, Ltd.

Reference Type
Journal Article
Authors
Hernandez-Verdun D, Roussel P, Thiry M, Sirri V, Lafontaine DL
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference