Reference: Di Segni G, et al. (2011) Yeast pheromone receptor genes STE2 and STE3 are differently regulated at the transcription and polyadenylation level. Proc Natl Acad Sci U S A 108(41):17082-6

Reference Help

Abstract


The orderly expression of specific genes is the basis for cell differentiation. Saccharomyces cerevisiae has two haploid mating types, a and a cells, in which the mating-specific genes are differentially expressed. When a and a cells are committed to mate, their growth is arrested. Here we show that a cryptic polyadenylation site is present inside the coding region of the a-specific STE2 gene, encoding the receptor for the a-factor. The two cell types produce an incomplete STE2 transcript, but only a cells generate full-length STE2 mRNA. We eliminated the cryptic poly(A) signal, thereby allowing the production of a complete STE2 mRNA in a cells. We mutagenized a cells and isolated a mutant producing full-length STE2 mRNA. The mutation occurred in the ITC1 gene, whose product, together with the product of ISW2, is known to repress STE2 transcriptional initiation. We propose that the regulation of the yeast mating genes is achieved through a concerted mechanism involving transcriptional and posttranscriptional events. In particular, the early poly(A) site in STE2 could contribute to a complete shutoff of its expression in a cells, avoiding autocrine activation and growth arrest. Remarkably, no cryptic poly(A) sites are present in the a-factor receptor STE3 gene, indicating that S. cerevisiae has devised different strategies to regulate the two receptor genes. It is predictable that a correlation between the repression of a gene and the presence of a cryptic poly(A) site could also be found in other organisms, especially when expression of that gene may be harmful.

Reference Type
Authors
Di Segni G, Gastaldi S, Zamboni M, Tocchini-Valentini GP
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference