Take our Survey

Reference: Zucchi PC and Zick M (2011) Membrane fusion catalyzed by a Rab, SNAREs, and SNARE chaperones is accompanied by enhanced permeability to small molecules and by lysis. Mol Biol Cell 22(23):4635-46

Reference Help

Abstract

The fusion of sealed biological membranes joins their enclosed aqueous compartments while mixing their membrane bilayers. Reconstituted fusion reactions are commonly assayed by lipid mixing, which can result from either true fusion or from lysis and its attendant reannealing of membranes. Fusion is also frequently assayed by the mixing of lumenal aqueous compartments, using probes of low molecular weight. With several probes (biotin, methylumbelliferyl-N-acetyl-a-D-neuraminic acid, and dithionite), we find that yeast vacuolar SNAREs (SNAP [Soluble NSF attachment protein] Receptors) increase the permeability of membranes to small molecules and that this permeabilization is enhanced by homotypic fusion and vacuole protein sorting complex (HOPS) and Sec17p/Sec18p, the vacuolar tethering and SNARE chaperone proteins. We now report the development of a novel assay that allows the parallel assessment of lipid mixing, the mixing of intact lumenal compartments, any lysis that occurs, and the membrane permeation of small molecules. Applying this assay to an all-purified reconstituted system consisting of vacuolar lipids, the four vacuolar SNAREs, the SNARE disassembly chaperones Sec17p and Sec18p, the Rab Ypt7p, and the Rab effector/SM protein complex HOPS, we show that true fusion is accompanied by strongly enhanced membrane permeability to small molecules and a measurable rate of lysis.

Reference Type
Journal Article
Authors
Zucchi PC, Zick M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference