Take our Survey

Reference: Zakrajsek T, et al. (2011) Saccharomyces cerevisiae in the stationary phase as a model organism--characterization at cellular and proteome level. J Proteomics 74(12):2837-45

Reference Help

Abstract


The yeast Saccharomyces cerevisiae has been used as a model organism to investigate responses to different environmental stressors. The importance of their conclusions has been expanded to human cells. The experiments were done with exponentially growing cells, which do not resemble human cells. Human and other eukaryotic cells spend the greater part of their lives in a quiescent state, known as G0 corresponding to the yeast stationary phase. Providing energy, which comes from mitochondrial respiration, is also common. Thus, in the present study S. cerevisiae was used in the stationary phase for characterization at the cellular and proteome levels. At the cellular level, optical density, cell viability, glycogen content, intracellular oxidation and cell energy metabolic activity were measured, while at the proteome level, protein profiles were analyzed using two-dimensional electrophoresis. The data obtained at both levels provide better insight into quiescence program state, which still remains poorly understood. At their base, optimal time period reflecting a stable metabolic and oxidative state of the yeast was determined. Consequently, this period is the appropriate to study changes in cell oxidant status and energy metabolic activity in response to different environmental stressors.

Reference Type
Journal Article
Authors
Zakrajsek T, Raspor P, Jamnik P
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference