Take our Survey

Reference: Pagadala V, et al. (2011) Characterization of the mitochondrial ATP synthase from yeast Saccharomyces cerevisae. J Bioenerg Biomembr 43(4):333-47

Reference Help

Abstract


The mitochondrial ATP synthase from yeast S. cerevisiae has been genetically modified, purified in a functional form, and characterized with regard to lipid requirement, compatibility with a variety of detergents, and the steric limit with rotation of the central stalk has been assessed. The ATP synthase has been modified on the N-terminus of the ?-subunit to include a His(6) tag for Ni-chelate affinity purification. The enzyme is purified by a two-step procedure from submitochondrial particles and the resulting enzyme demonstrates lipid dependent oligomycin sensitive ATPase activity of 50 units/mg. The yeast ATP synthase shows a strong lipid selectivity, with cardiolipin (CL) being the most effective activating lipid and there are 30 moles CL bound per mole enzyme at saturation. Green Fluorescent Protein (GFP) has also been fused to the C-terminus of the e-subunit to create a steric block for rotation of the central stalk. The e-GFP fusion peptide is imported into the mitochondrion, assembled with the ATP synthase, and inhibits ATP synthetic and hydrolytic activity of the enzyme. F(1)F(o) ATP synthase with e-GFP was purified to homogeneity and serves as an excellent enzyme for two- and three-dimensional crystallization studies.

Reference Type
Journal Article
Authors
Pagadala V, Vistain L, Symersky J, Mueller DM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference