Take our Survey

Reference: Vidgren V, et al. (2011) Identification of regulatory elements in the AGT1 promoter of ale and lager strains of brewer's yeast. Yeast 28(8):579-94

Reference Help

Abstract

Agt1 is an interesting a-glucoside transporter for the brewing industry, as it efficiently transports maltotriose, a sugar often remaining partly unused during beer fermentation. It has been shown that on maltose the expression level of AGT1 is much higher in ale strains than in lager strains, and that glucose represses the expression, particularly in the ale strains. In the present study the regulatory elements of the AGT1 promoter of one ale and two lager strains were identified by computational methods. Promoter regions up to 1.9 kbp upstream of the AGT1 gene were sequenced from the three brewer's yeast strains and the laboratory yeast strain CEN.PK-1D. The promoter sequence of the laboratory strain was identical to the AGT1 promoter of strain S288c of the Saccharomyces Genome Database, whereas the promoter sequences of the industrial strains diverged markedly from the S288c strain. The AGT1 promoter regions of the ale and lager strains were for the most part identical to each other, except for one 22 bp deletion and two 94 and 95 bp insertions in the ale strain. Computational analyses of promoter elements revealed that the promoter sequences contained several Mig1- and MAL-activator binding sites, as was expected. However, some of the Mig1 and MAL-activator binding sites were located on the two insertions of the ale strain, and thus offered a plausible explanation for the different expression pattern of the AGT1 gene in the ale strains. Accordingly, functional analysis of A60 ale and A15 lager strain AGT1 promoters fused to GFP (encoding the green fluorescent protein) showed a significant difference in the ability of these two promoters to drive GFP expression. Under the control of the AGT1 promoter of the ale strain the emergence of GFP was strongly induced by maltose, whereas only a low level of GFP was detected with the construct carrying the AGT1 promoter of the lager strain. Thus, the extra MAL-activator binding element, present in the AGT1 promoter of the ale strain, appears to be necessary to reach a high level of induction by maltose. Both AGT1 promoters were repressed by glucose but their derepression was different, possibly due to a distinct distribution of Mig1 elements in these two promoters.

Reference Type
Journal Article
Authors
Vidgren V, Kankainen M, Londesborough J, Ruohonen L
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference