Take our Survey

Reference: Campbell RN, et al. (2011) Isolation of compensatory inhibitor domain mutants to novel activation domain variants using the split-ubiquitin screen. Yeast 28(8):569-78

Reference Help

Abstract


The control of transcription factor function plays an important role in the development of many processes in eukaryotes, such as drug resistance in fungi and human tumours undergoing chemotherapy. Detailed molecular mapping of the interactions between transcription factors and their protein partners can give important information about their mechanisms of action and reveal potential therapeutic targets. We devised a genetic screening system for mapping the interaction site between the Saccharomyces cerevisiae transcription factor-inhibitor pair Gal4p and Gal80p. A novel Gal4p activation domain mutant, L868K, was produced, which prevented it interacting with Gal80p. The split-ubiquitin system was used with a mutant GAL80 library in order to screen for compensatory mutants in Gal80p which would restore binding with L868K. Five single amino acid residue compensatory mutations in Gal80p which restored the interaction with Gal4p(L868K) were isolated. These compensatory mutations were specific to L868K as they were unable to restore the interaction with two other Gal4p mutants that were incapable of interacting with Gal80p. Mutations within Gal80p that were capable of compensating for Gal4p (L868K) clustered inside a Gal80p surface cleft, supporting the idea that this area is important for Gal4p binding. Our data suggest a way to generate information about interaction sites that should be applicable to any transcription factor.

Reference Type
Journal Article
Authors
Campbell RN, Westhorpe F, Reece RJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference