Reference: Stroud DA, et al. (2011) Biogenesis of mitochondrial ?-barrel proteins: the POTRA domain is involved in precursor release from the SAM complex. Mol Biol Cell 22(16):2823-33

Reference Help

Abstract


The mitochondrial outer membrane contains proteinaceous machineries for the translocation of precursor proteins. The sorting and assembly machinery (SAM) is required for the insertion of ?-barrel proteins into the outer membrane. Sam50 is the channel-forming core subunit of the SAM complex and belongs to the BamA/Sam50/Toc75 family of proteins that have been conserved from Gram-negative bacteria to mitochondria and chloroplasts. These proteins contain one or more N-terminal polypeptide transport-associated (POTRA) domains. POTRA domains can bind precursor proteins, however, different views exist on the role of POTRA domains in the biogenesis of ?-barrel proteins. It has been suggested that the single POTRA domain of mitochondrial Sam50 plays a receptor-like function at the SAM complex. We established a system to monitor the interaction of chemical amounts of ?-barrel precursor proteins with the SAM complex of wild-type and mutant yeast in organello. We report that the SAM complex lacking the POTRA domain of Sam50 efficiently binds ?-barrel precursors, but is impaired in the release of the precursors. These results indicate the POTRA domain of Sam50 is not essential for recognition of ?-barrel precursors but functions in a subsequent step to promote the release of precursor proteins from the SAM complex.

Reference Type
Journal Article
Authors
Stroud DA, Becker T, Qiu J, Stojanovski D, Pfannschmidt S, Wirth C, Hunte C, Guiard B, Meisinger C, Pfanner N, ... Show all
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference