Take our Survey

Reference: Stolovicki E and Braun E (2011) Collective dynamics of gene expression in cell populations. PLoS One 6(6):e20530

Reference Help

Abstract


The phenotypic state of the cell is commonly thought to be determined by the set of expressed genes. However, given the apparent complexity of genetic networks, it remains open what processes stabilize a particular phenotypic state. Moreover, it is not clear how unique is the mapping between the vector of expressed genes and the cell's phenotypic state. To gain insight on these issues, we study here the expression dynamics of metabolically essential genes in twin cell populations. We show that two yeast cell populations derived from a single steady-state mother population and exhibiting a similar growth phenotype in response to an environmental challenge, displayed diverse expression patterns of essential genes. The observed diversity in the mean expression between populations could not result from stochastic cell-to-cell variability, which would be averaged out in our large cell populations. Remarkably, within a population, sets of expressed genes exhibited coherent dynamics over many generations. Thus, the emerging gene expression patterns resulted from collective population dynamics. It suggests that in a wide range of biological contexts, gene expression reflects a self-organization process coupled to population-environment dynamics.

Reference Type
Journal Article
Authors
Stolovicki E, Braun E
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference