Take our Survey

Reference: Houghtaling S, et al. (2011) Molecular assays to investigate chromatin changes during DNA double-strand break repair in yeast. Methods Mol Biol 745:79-97

Reference Help

Abstract

Multiple types of DNA damage, including bulky adducts, DNA single-strand breaks, and DNA double-strand breaks (DSBs), have deleterious effects on the genomes of eukaryotes. DSBs form normally during a variety of biological processes, such as V-D-J recombination and yeast mating type switching, but unprogrammed DSBs are among the most dangerous types of lesion because if left unrepaired they can lead to loss of genetic material or chromosomal rearrangements. The presence of DSBs leads to a DNA damage response involving activation of cell cycle checkpoints, recruitment of repair proteins, and chromatin remodeling. Because many of the proteins that mediate these processes are evolutionarily conserved, the budding yeast, Saccharomyces cerevisiae, has been used as a model organism to investigate the factors involved in the response to DSBs. Recent research on DSB repair has focused on the barrier that chromatin represents to the repair process. In this article, we describe molecular techniques available to analyze chromatin architecture near a defined DSB in budding yeast. These techniques may be of value to experimentalists who are investigating the role of a novel protein in DSB repair specifically in the context of chromatin.

Reference Type
Journal Article
Authors
Houghtaling S, Tsukuda T, Osley MA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference