Reference: Gaczynska M and Osmulski PA (2011) Atomic force microscopy of proteasome assemblies. Methods Mol Biol 736:117-32

Reference Help

Abstract


The proteasome is the essential prime protease in all eukaryotes. The large, multisubunit, modular, and multifunctional enzyme is responsible for the majority of regulated intracellular protein degradation. It constitutes a part of the multienzyme ubiquitin-proteasome pathway, which is broadly implicated in recognition, tagging, and cleavage of proteins. The name "proteasome" refers to several types of protein assemblies sharing a common catalytic core particle. Additional protein modules attach to the core, regulate its activities, and broaden its functional capabilities. The structure of proteasomes has been studied extensively with multiple methods. The crystal structure of the core particle was solved for several species. However, only a single structure of the core particle decorated with PA26 activator has been determined. NMR spectroscopy was successfully applied to probe a much -simpler, archaebacterial type of the core particle. In turn, electron microscopy was very effective in exploring the spatial arrangement of many classes of assemblies. Still, the makeup of higher-order -complexes is not well established. Besides, the crystal structure provided very limited information on proteasome molecular dynamics. Atomic force microscopy (AFM) is an ideal technique to address questions that are unanswered by other approaches. For example, AFM is perfectly suited to study allosteric regulation of proteasome, the role of protein dynamics in enzymatic catalysis, and the spatial organization of modules and subunits in assemblies. Here, we present a method that probes the conformational diversity and dynamics of yeast core particle using the oscillating mode AFM in liquid. We are taking advantage of the observation that the tube-shaped core particle is equipped with a swinging gate leading to the catalytic chamber. We demonstrate how to identify distinct gate conformations in AFM images and how to characterize the gate dynamics controlled with ligands and disturbed by mutations.

Reference Type
Journal Article
Authors
Gaczynska M, Osmulski PA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference