Reference: Juanes MA, et al. (2011) Ase1p phosphorylation by cyclin-dependent kinase promotes correct spindle assembly in S. cerevisiae. Cell Cycle 10(12):1988-97

Reference Help

Abstract


Spindle morphogenesis and dynamics follow an orderly sequence of events coupled to the oscillatory activation of cyclin-dependent kinase (CDK). Using S. cerevisiae, we have addressed the requirement of CDK for phosphorylation of the spindle midzone component Ase1p and its significance to spindle assembly. Ase1p is related to human PRC1, a protein negatively regulated by CDK until late mitosis, when it is required for central spindle organization and cytokinesis. By contrast, we show here that Ase1p phosphorylation by CDK promotes correct spindle assembly. Indeed, Ase1p phosphorylation coincident with spindle assembly requires Clb5p, Clb3p and Clb4p. Moreover, in clb5? cells, Ase1p recruitment and the kinetics of spindle formation were perturbed. These phenotypes were enhanced in a cdc28-4 clb5? mutant to the extent that midzone disruption resulted in transient breaks of the short spindle. By contrast, clb3? clb4? cells delayed spindle assembly downstream to Ase1p recruitment. Expression of Ase1(7D) p that mimics the phosphorylated state restored timely recruitment in clb5? cells and fully rescued the corresponding spindle phenotypes. Finally, Ase1(7D) p partially suppressed the spindle assembly delay in clb3? clb4? cells. Thus, Ase1p phosphorylation by CDK promotes the assembly and stability of the mitotic spindle. It follows that CDK may differentially alter the functionality of members of the Ase1p/PRC1 family to place their distinct roles in their respective stage-specific contexts, a further factor of complexity in the organization of pathways promoting spindle assembly and dynamics.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Juanes MA, Ten Hoopen R, Segal M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference