Reference: Momcilovic M and Carlson M (2011) Alterations at dispersed sites cause phosphorylation and activation of SNF1 protein kinase during growth on high glucose. J Biol Chem 286(26):23544-51

Reference Help

Abstract

The SNF1/AMP-activated protein kinases are central energy regulators in eukaryotes. SNF1 of Saccharomyces cerevisiae is inhibited during growth on high levels of glucose and is activated in response to glucose depletion and other stresses. Activation entails phosphorylation of Thr(210) on the activation loop of the catalytic subunit Snf1 by Snf1-activating kinases. We have used mutational analysis to identify Snf1 residues that are important for regulation. Alteration of Tyr(106) in the aC helix or Leu(198) adjacent to the Asp-Phe-Gly motif on the activation loop relieved glucose inhibition of phosphorylation, resulting in phosphorylation of Thr(210) during growth on high levels of glucose. Substitution of Arg for Gly(53), at the N terminus of the kinase domain, increased activation on both high and low glucose. Alteration of the ubiquitin-associated domain revealed a modest autoinhibitory effect. Previous studies identified alterations of the Gal83 (?) and Snf4 (?) subunits that relieve glucose inhibition, and we have here identified a distinct set of Gal83 residues that are required. Together, these results indicate that alterations at dispersed sites within each subunit of SNF1 cause phosphorylation of the kinase during growth on high levels of glucose. These findings suggest that the conformation of the SNF1 complex is crucial to maintenance of the inactive state during growth on high glucose and that the default state for SNF1 is one in which Thr(210) is phosphorylated and the kinase is active.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Momcilovic M, Carlson M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference