Take our Survey

Reference: Sylvain MA, et al. (2011) Yeast zinc cluster proteins Dal81 and Uga3 cooperate by targeting common coactivators for transcriptional activation of ?-aminobutyrate responsive genes. Genetics 188(3):523-34

Reference Help

Abstract

In Saccharomyces cerevisiae, optimal utilization of various compounds as a nitrogen source is mediated by a complex transcriptional network. The zinc cluster protein Dal81 is a general activator of nitrogen metabolic genes, including those for ?-aminobutyrate (GABA). In contrast, Uga3 (another zinc cluster protein) is an activator restricted to the control of genes involved in utilization of GABA. Uga3 binds to DNA elements found in the promoters of target genes and increases their expression in the presence of GABA. Dal81 appears to act as a coactivator since the DNA-binding activity of this factor is dispensable but its mode of action is not known. In this study, we have mapped a regulatory, as well as an activating, region for Uga3. A LexA-Uga3 chimeric protein activates a lexA reporter in a GABA- and Dal81-dependent manner. Activation by Uga3 requires the SAGA complex as well as Gal11, a component of mediator. ChIP analysis revealed that Uga3 is weakly bound to target promoters. The presence of GABA enhances binding of Uga3 and allows recruitment of Dal81 and Gal11 to target genes. Recruitment of Gal11 is prevented in the absence of Dal81. Importantly, Dal81 by itself is a potent activator when tethered to DNA and its activity depends on SAGA and Gal11 but not Uga3. Overexpression of Uga3 bypasses the requirement for Dal81 but not for SAGA or Gal11. Thus, under artificial conditions, both Dal81 and Uga3 can activate transcription independently of each other. However, under physiological conditions, both factors cooperate by targeting common coactivators.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Sylvain MA, Liang XB, Hellauer K, Turcotte B
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference