Reference: Crisucci EM and Arndt KM (2011) The Paf1 complex represses ARG1 transcription in Saccharomyces cerevisiae by promoting histone modifications. Eukaryot Cell 10(6):712-23

Reference Help

Abstract


The conserved multifunctional Paf1 complex is important for the proper transcription of numerous genes, and yet the exact mechanisms by which it controls gene expression remain unclear. While previous studies indicate that the Paf1 complex is a positive regulator of transcription, the repression of many genes also requires the Paf1 complex. In this study we used ARG1 as a model gene to study transcriptional repression by the Paf1 complex in Saccharomyces cerevisiae. We found that several members of the Paf1 complex contribute to ARG1 repression and that the complex localizes to the ARG1 promoter and coding region in repressing conditions, which is consistent with a direct repressive function. Furthermore, Paf1 complex-dependent histone modifications are enriched at the ARG1 locus in repressing conditions, and histone H3 lysine 4 methylation contributes to ARG1 repression. Consistent with previous reports, histone H2B monoubiquitylation, the mark upstream of histone H3 lysine 4 methylation, is also important for ARG1 repression. To begin to identify the mechanistic basis for Paf1 complex-mediated repression of ARG1, we focused on the Rtf1 subunit of the complex. Through an analysis of RTF1 mutations that abrogate known Rtf1 activities, we found that Rtf1 mediates ARG1 repression primarily by facilitating histone modifications. Other members of the Paf1 complex, such as Paf1, appear to repress ARG1 through additional mechanisms. Together, our results suggest that Rtf1-dependent histone H2B ubiquitylation and H3 K4 methylation repress ARG1 expression and that histone modifications normally associated with active transcription can occur at repressed loci and contribute to transcriptional repression.

Reference Type
Authors
Crisucci EM, Arndt KM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference