Reference: Groppi S, et al. (2011) Glucose-induced calcium influx in budding yeast involves a novel calcium transport system and can activate calcineurin. Cell Calcium 49(6):376-86

Reference Help

Abstract


Glucose addition to glucose-starved Saccharomyces cerevisiae cells triggers a quick and transient influx of calcium from the extracellular environment. In yeast at least two different carrier systems were identified: a high affinity system, requiring Cch1 channel, and a low affinity system. Here we report that another calcium transport system exists in yeast, not yet identified, that can substitute the two known systems when they are inactivated. This system was called GIC (for Glucose Induced Calcium) system and it is a high affinity calcium transport system, magnesium-sensitive but nickel-resistant. Moreover, GIC transport is sensitive to gadolinium and nifedipine, but it is not sensitive to inhibition by verapamil, which conversely behaves as an agonist on glucose response. GIC transport is fully functional in conditions when calcineurin is active, a serine/threonine specificity phosphatase involved in the regulation of calcium homeostasis and in many other cellular phenomena such as tolerance to high concentrations of Na(+) and Li(+), response to pheromones and gene transcription regulation. Here it is reported for the first time that calcineurin can also be activated by nutrients: the activation of Crz1 transcription factor by calcineurin was observed in derepressed cells after addition of glucose in the presence of extracellular calcium.

Reference Type
Journal Article
Authors
Groppi S, Belotti F, Brandao RL, Martegani E, Tisi R
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference