Take our Survey

Reference: Ferreira TC, et al. (2011) Cell density-dependent linoleic acid toxicity to Saccharomyces cerevisiae. FEMS Yeast Res 11(5):408-17

Reference Help

Abstract

Since the discovery of the apoptotic pathway in Saccharomyces cerevisiae, several compounds have been shown to cause apoptosis in this organism. While the toxicity of polyunsaturated fatty acids (PUFA) peroxides towards S. cerevisiae has been known for a long time, studies on the effect of nonoxidized PUFA are scarce. The present study deals specifically with linoleic acid (LA) in its nonoxidized form and investigates its toxicity to yeast. Saccharomyces cerevisiae is unable to synthesize PUFA, but can take up and incorporate them into its membranes. Reports from the literature indicate that LA is not toxic to yeast cells. However, we demonstrated that yeast cell growth decreased in cultures treated with 0.1 mM LA for 4 h, and 3-(4,5 dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide reduction (a measure of respiratory activity) decreased by 47%. This toxicity was dependent on the number of cells used in the experiment. We show apoptosis induction by LA concomitant with increases in malondialdehyde, glutathione content, activities of catalase and cytochrome c peroxidase, and decreases in two metabolic enzyme activities. While the main purpose of this study was to show that LA causes cell death in yeast, our results indicate some of the molecular mechanisms of the cell toxicity of PUFA.

Reference Type
Journal Article
Authors
Ferreira TC, de Moraes LM, Campos EG
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference