Reference: Lee EJ and Tournier C (2011) The requirement of uncoordinated 51-like kinase 1 (ULK1) and ULK2 in the regulation of autophagy. Autophagy 7(7):689-95

Reference Help

Abstract


Autophagy is an evolutionarily conserved physiological process of self-digestion by a cell to adapt to various stresses, including starvation. Its molecular basis involves the concerted activation of proteins encoded by the family of autophagy-related (Atg) genes. The best characterized is the serine/threonine protein kinase Atg1 in yeast which appears to be essential at the early stage of autophagy. In mammals, five Atg1 homologues have been identified as uncoordinated (UNC) 51-like kinase 1 to 4 and STK36. ULK1 and ULK2 are the most closely related members of the family, sharing 78% homology within their protein kinase domains. However, the specific function of ULK1 and ULK2 in mammalian autophagy is not fully understood. Here, we demonstrate that ULK1 and ULK2 are functionally redundant protein kinases required to mediate autophagy under nutrient-deprived conditions in fibroblasts. In contrast, ULK1, but not ULK2, is critical to induce the autophagic response of cerebellar granule neurons (CGN) to low potassium concentration in serum-free conditions. Furthermore, we found that ULK1 has a cytoprotective function in neurons. Together, these results provide strong genetic evidence that ULK1 is an essential component of the autophagic signaling pathway. The ability of ULK2 to compensate for the loss of ULK1 function is cell-type specific.

Reference Type
Journal Article
Authors
Lee EJ, Tournier C
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference