Take our Survey

Reference: Rakauskaite R and Dinman JD (2011) Mutations of highly conserved bases in the peptidyltransferase center induce compensatory rearrangements in yeast ribosomes. RNA 17(5):855-64

Reference Help

Abstract

Molecular dynamics simulation identified three highly conserved rRNA bases in the large subunit of the ribosome that form a three-dimensional (3D) "gate" that induces pausing of the aa-tRNA acceptor stem during accommodation into the A-site. A nearby fourth base contacting the "tryptophan finger" of yeast protein L3, which is involved in the coordinating elongation factor recruitment to the ribosome with peptidyltransfer, is also implicated in this process. To better understand the functional importance of these bases, single base substitutions as well as deletions at all four positions were constructed and expressed as the sole forms of ribosomes in yeast Saccharomyces cerevisiae. None of the mutants had strong effects on cell growth, translational fidelity, or on the interactions between ribosomes and tRNAs. However, the mutants did promote strong effects on cell growth in the presence of translational inhibitors, and differences in viability between yeast and Escherichia coli mutants at homologous positions suggest new targets for antibacterial therapeutics. Mutant ribosomes also promoted changes in 25S rRNA structure, all localized to the core of peptidyltransferase center (i.e., the proto-ribosome area). We suggest that a certain degree of structural plasticity is built into the ribosome, enabling it to ensure accurate translation of the genetic code while providing it with the flexibility to adapt and evolve.

Reference Type
Journal Article
Authors
Rakauskaite R, Dinman JD
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference