Take our Survey

Reference: Chang M, et al. (2011) Long telomeres are preferentially extended during recombination-mediated telomere maintenance. Nat Struct Mol Biol 18(4):451-6

Reference Help

Abstract

Most human somatic cells do not express telomerase. Consequently, with each cell division their telomeres progressively shorten until replicative senescence is induced. Around 15% of human cancers maintain their telomeres using telomerase-independent, recombination-based mechanisms that are collectively termed 'alternative lengthening of telomeres' (ALT). In the yeast Saccharomyces cerevisiae, ALT cells are referred to as 'survivors'. One type of survivor (type II) resembles human ALT cells in that both are defined by the amplification of telomeric repeats. We analyzed recombination-mediated telomere extension events at individual telomeres in telomerase-negative yeast during the formation of type II survivors and found that long telomeres were preferentially extended. Furthermore, senescent cells with long telomeres were more efficient at bypassing senescence by the type II pathway. We speculate that telomere length may be important in determining whether cancer cells use telomerase or ALT to bypass replicative senescence.

Reference Type
Journal Article
Authors
Chang M, Dittmar JC, Rothstein R
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference