Take our Survey

Reference: Palmieri F, et al. (2011) Evolution, structure and function of mitochondrial carriers: a review with new insights. Plant J 66(1):161-81

Reference Help

Abstract


The mitochondrial carriers (MC) constitute a large family (MCF) of inner membrane transporters displaying different substrate specificities, patterns of gene expression and even non-mitochondrial organelle localization. In Arabidopsis thaliana 58 genes encode these six trans-membrane domain proteins. The number in other sequenced plant genomes varies from 37 to 125, thus being larger than that of Saccharomyces cerevisiae and comparable with that of Homo sapiens. In addition to displaying highly similar secondary structures, the proteins of the MCF can be subdivided into subfamilies on the basis of substrate specificity and the presence of specific symmetry-related amino acid triplets. We assessed the predictive power of these triplets by comparing predictions with experimentally determined data for Arabidopsis MCs, and applied these predictions to the not yet functionally characterized mitochondrial carriers of the grass, Brachypodium distachyon, and the alga, Ostreococcus lucimarinus. We additionally studied evolutionary aspects of the plant MCF by comparing sequence data of the Arabidopsis MCF with those of Saccharomyces cerevisiae and Homo sapiens, then with those of Brachypodium distachyon and Ostreococcus lucimarinus, employing intra- and inter-genome comparisons. Finally, we discussed the importance of the approaches of global gene expression analysis and in vivo characterizations in order to address the relevance of these vital carrier proteins.CI - (c) 2011 The Authors. The Plant Journal (c) 2011 Blackwell Publishing Ltd.

Reference Type
Journal Article
Authors
Palmieri F, Pierri CL, De Grassi A, Nunes-Nesi A, Fernie AR
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference